Skip to contents

The functions seeks to determine the reaction order and kinetic rate constant for chemical models that best fit degradation kinetic data. The input of the function is a data-frame organized as follows:

  1. first columns, time data;

  2. second columns, concentration data;

  3. third column (optional, but highly recommended), experimental error

Usage

det_order(dframe)

Arguments

dframe

a data-frame with 2 or 3 columns, containing time, concentrations, and (optional) error data.

Value

A ord_res object containing in a list the following information:

  1. the phase space coordinates of transformed data;

  2. the linear regression performed in the phase space;

  3. a boolean variable indicating if the estimate of the degradation rate constant is statistically significant;

  4. non-linear regression performed using a n^th^-order kinetic model (if n=0 the regression is linear);

  5. the data-frame given as the input;

  6. the estimated reaction order.

See also

results() to print the results or goodness_of_fit() to visualize the major goodness-of-fit measures; plot_ord() to plot the regressions in both the phase and conventional spaces; kin_regr() to extract the best kinetic model that explain the data and phase_space() to extract the linear regression in the phase space.

Examples

t <- c(0, 4, 8, 12, 16, 20)
conc <- c(1, 0.51, 0.24, 0.12, 0.07, 0.02)
err <- c(0.02, 0.05, 0.04, 0.04, 0.03, 0.02)
dframe <- data.frame(t, conc)
res <- det_order(dframe)
#> Reaction order estimated: 1

class(res)
#> [1] "ord_res"



dframe2 <- data.frame(t, conc, err)
res2 <- det_order(dframe2)
#> Reaction order estimated: 1

res2[[5]] == dframe2
#>         t conc  err
#> [1,] TRUE TRUE TRUE
#> [2,] TRUE TRUE TRUE
#> [3,] TRUE TRUE TRUE
#> [4,] TRUE TRUE TRUE
#> [5,] TRUE TRUE TRUE
#> [6,] TRUE TRUE TRUE