Given the reaction order \(n\) , the function returns the equation corresponding to that particular n^th^-order kinetic model. For \(n\neq 1\): $$y(t)=((n-1)\,k\,t+y_0^{1-n}))^{\frac{1}{n-1}}$$ for \(n=1\): $$y(t)=y_0\,e^{-k\,t}$$
Given the reaction order \(n\) , the function returns the equation corresponding to that particular n^th^-order kinetic model. For \(n\neq 1\): $$y(t)=((n-1)\,k\,t+y_0^{1-n}))^{\frac{1}{n-1}}$$ for \(n=1\): $$y(t)=y_0\,e^{-k\,t}$$